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Entroṕıa de entrelazamento e holograf́ıa

Autor:
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Abstract

In 1935 Einstein, Podolsky and Rosen discovered an unexpected and appar-
ently paradoxical property of quantum mechanics that they called entanglement.
Nowadays it is a fundamental feature of the theory and a cornerstone in quantum
information theory, quantum computing and many other areas of science. The aim
of this work is to develop a tool, namely the von Neumann entropy, to detect and
quantify entanglement in a system.

The approach we will follow will be to successively introduce concepts and
join them with the previous ones. More precisely, we will begin with entropy,
then entanglement and right after show their connection. Lastly, we briefly ex-
plain the AdS/CFT correspondence and, with the help of a conjecture by Ryu and
Takayanagi, link it with entanglement and use it calculate entropies.

Resumen

En 1935 Einstein, Podolsky y Rosen descubrieron una propiedad inespeperada
y aparentemente paradógica de la mecánica cuántica a la cual llamaron entrelaza-
miento. Hoy en d́ıa es una caracteŕıstica fundamental de la teoŕıa y una piedra
angular en teoŕıa de la información cuántica, computación cuántica y muchas otras
áreas de la ciencia. El objetivo de este trabajo es desarrollar una herramiento, en
concreto la entroṕıa de von Neumann, para detectar y cuantificar entrelazamiento
en un sistema.

El enfoque que seguiremos será el de introducir conceptos sucesivamente y rela-
cionarlos con los anteriores. En concreto, empezaremos con la entroṕıa, después
entrelazamiento y de seguido mostraremos su conexión. Por último, explicaremos
brevemente la correspondencia AdS/CFT y, con la ayuda de la conjectura de Ryu
y Takayanagi, la relacionaremos con el entrelazamiento y la usaremos para calcular
entroṕıas.

Resumo

En 1935 Einstein, Podolsky e Rosen descubriron unha propiedade inespeperada
e aparentemente paradóxica da mecánica cuántica á cal chamaron entrelazamento.
Hoxe en d́ıa é unha caracteŕıstica fundamental da teoŕıa e unha pedra angular
en teoŕıa da información cuántica, computación cuántica e moitas outras áreas da
ciencia. O obxectivo deste traballo é desenvolver unha ferramenta, en concreto a
entroṕıa de von Neumann, para detectar e cuantificar entrelazamento nun sistema.

O enfoque que seguiremos será o de introducir conceptos sucesivamente e rela-
cionalos cos anteriores. En concreto, comezaremos ca entroṕıa, despois entrelaza-
mento e de seguido mostraremos a sua conexión. Por último, explicaremos breve-
mente a correspondencia AdS/CFT e, coa axuda da conxetura de Ryu e Takayanagi,
relacionaremola co entrelazamento e usarémola para calcular entroṕıas.
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1 Introduction

Entanglement is one of the key features of quantum physics, with no analogy or similarity
in classical theories. In the latter, if one is able to describe1 a given system it is always
possible to describe any part of it: knowing the state of the system is equivalent to
knowing the state of each of its parts (whatever division we have made). On the other
hand, in quantum physics we can have a full description of a system as a whole which
fails to describe unambiguously a part of the system. A system with this behavior is said
to be entangled.

When two particles are entangled, measurements of physical properties performed on
them are found to be perfectly correlated. For example, if we generate two particles such
that their total spin is zero (more technically, such that their composite (non normalized)
state is of the form |ψ〉 = |↑〉1 |↓〉2 + |↓〉1 |↑〉2, where subscripts 1 and 2 refer to the two
different particles), and measure the spin of one of the particles, we will automatically
know the spin of the other particle. This is, if we perform a measure that tells us that
particle 1 has spin up, then we know that the state of the whole system will collapse to
|↑〉1 |↓〉2, and therefore the spin of particle 2 must be down. Now, these two particles
may be really far from each other, they may even be causally disconnected ; however,
as we have just argued, we can get instantaneous information about the second particle
by performing a measurement on the first, violating the local realism view of causality.
This bizzare property, which Einstein called a“spooky action at distance”, was exposed
in 1935 by Einstein, Podolsky and Rosen in a famous paper which became known as the
EPR paradox [1]. In it they explained their view that the description of reality provided
by quantum mechanics could not be complete. However, this and other counterintuitive
predictions of quantum mechanics have been verified experimentally, and nowadays they
are commonly accepted. The resolutions of the EPR paradox had important implications
in the interpretation of quantum mechanics. Some interpretations of quantum mechanics
state that the effect of the measure occurs instantaneously, while others argue that there
is no “effect” at all; but, of course, both agree that, although entanglement produces cor-
relation between measurements, no transmission of information at speeds greater than the
speed of light is possible. The EPR paradox reveals just one of the deep and unexpected
properties arising from entanglement.

The aim of this work is to use entropy (although not the thermal entropy that we
are used to from Thermodynamics) to detect and quantify entanglement in a system.
In section 2 we will introduce the so called von Neumann entropy, give a clear physi-
cal interpretation to it and state some of its mathematical and physical properties. In
section 3 we will give a proper definition of entanglement and show the profound con-
nection between this quantum property and the just defined mathematical entropy. We
will continue in section 4 by extending this formalism from ordinary quantum mechanics
to quantum field theories, where we will see the causal structure of space-time has im-
portant implications. Lastly, in section 5 we will present holography and the AdS/CFT
correspondence, a duality between quantum physics and gravity theories. With this tool

1By describing we mean, in quantum terms, to know the (quantum) state of the system.
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and using the Ryu-Takayanagi (RT) conjecture we will transform entanglement entropy
from an algebraic quantity to a geometrical one. This will not just be a much easier
method to calculate entanglement entropies but also another indication of the great con-
nections between quantum physics and gravity. In fact, RT provides such a direct link
between spatial entanglement and the dual geometry that it has been suggested that
entanglement is the basic property of the field theory from which the dual gravitational
space-time emerges.

2 Von Neumann entropy

Let us consider a quantum system defined by a density matrix ρ. This is, ρ is an
operator fulfilling [2]

ρ† = ρ, ρ ≥ 0, Tr ρ = 1 . (1)

We define the von Neumann entropy as:

S(ρ) := −Tr (ρ ln ρ) . (2)

Remembering that the expected value of an operator O is given by 〈O〉ρ = Tr (Oρ), we see
that the von Neumann entropy is nothing but the expected value of the operator − ln ρ.
However, this operator does not correspond to any physical observable and therefore it
is hard to interpret it. Thus, (2) does not provide any intuition about von Neumann
entropy. Nevertheless, using the properties of a density matrix we can associate a very
clear physical meaning to this quantity. First of all, the first property in (1) guarantees
the diagonalization of ρ, so that

ρ =
∑
a

pa |a〉 〈a| . (3)

Thereby, (2) can be rewritten as:

S(ρ) = −
∑
a

pa ln pa . (4)

The two last properties in (1) allow us to identify {pa} as a probability distribution
(physically, pa is the (classical) probability of finding our system in the state |a〉). Since
0 ≤ pa ≤ 1 for all a, the von Neumann entropy is a sum of non-negative numbers and we
can trivially infer:2

S(ρ) ≥ 0 . (5)

This inequality is saturated when all the terms in the sum are zero, which is equivalent
to pa = δaa0 . This is,

S(ρ) = 0⇐⇒ ρ = |a0〉 〈a0| . (6)

We say that a system with a density matrix as the previous one (i.e., a projector) is pure;
otherwise we say it is mixed. Pure systems can be described using the usual formalism of

2We define, by continuity, 0 · ln 0 = 0.

4



2.1 Joint systems

quantum mechanics, taking a vector in a Hilbert space as a representative of a system. In
this case, the state of our system is completely known. On the other hand, mixed systems
(which cannot be treated with the usual formalism) present a probabilistic nature: we
cannot know with precision the state of the system but only the probability of it being in
each of its possible states. Thus, (6) gives us the first physical interpretation of the von
Neumann entropy: it is a detector of our ignorance about a system. In fact, although we
will not do it here, it can be argued that it not only detects ignorance but it also quantifies
it.

2.1 Joint systems

Let us now consider a joint system AB, whose Hilbert space HAB may be thought of as
the tensor product of both subsystems’ Hilbert spaces:

HAB
∼= HA ⊗HB . (7)

If ρAB is the density matrix of the whole system, we define the reduced density matrix
associated to subsystem A as

ρA := TrB ρAB , (8)

where TrB ≡ TrHB
. Our goal is to construct a quantity that detects correlation between

the subsystems. Subadditivity and extensivity of von Neumann entropy3

S(AB) ≤ S(A) + S(B) , (9)

S(AB) = S(A) + S(B)⇐⇒ ρAB = ρA ⊗ ρB , (10)

suggest defining the quantity

I(A : B) = S(A) + S(B)− S(AB) (11)

as a correlation detector. I(A : B) is called the mutual information [3]. Using (9) we
have

I(A : B) ≥ 0 , (12)

and (10) tells us that the equality is given when ρAB = ρA ⊗ ρB. This last condition
is the generalization of the factorization of a density function pXY (x, y) = pX(x)pY (y)
to this new density matrix formalism and therefore it is saying that both systems are
independent. Thus, we can conclude that mutual information detects correlation between
subsystems (again, it also quantifies it). Lastly we present here the so called Araki-Lieb
inequality

|S(A)− S(B)| ≤ S(AB) , (13)

which will be used in the next section.

3From now on we will use the notation S(ρX) ≡ S(X).
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3 Entropy and entanglement

Let us consider again a joint system AB and let ρAB be its density matrix. We say the
system is separable or clasically correlated if we can write

ρAB =
∑
i

pi ρ
i
A ⊗ ρiB , (14)

where ρiA and ρiB are density matrices for A and B respectively and {pi} is a probability
distribution.4 Otherwise we say the system is entangled.

3.1 Pure systems

We begin our discussion analyzing the case in which our system is pure, this is,

ρAB = |φ〉 〈φ| , (15)

and consequently we can describe it in the usual manner with the vector |φ〉 ∈ HAB. In
this case the system ρAB will be separable if and only if we can write |φ〉 = |φA〉 ⊗ |φB〉,
|φA〉 and |φB〉 being states in HA and HB. We say that a vector which can be written in
the previous way is factorizable. We then see that, for pure systems, the separability
property (defined for density matrices) is equivalent to the factorization property (defined
for vectors).

We will now characterize pure entangled systems. Using a singular value decomposition
we can find sets {|φiA〉} and {|φiB〉} of orthonormal vectors in HA and HB such that

|φ〉 =
∑
i

√
pi
∣∣φiA〉⊗ ∣∣φiB〉 , (16)

A straightforward calculation shows that

ρA =
∑
i

pi
∣∣φiA〉 〈φiA∣∣ , ρB =

∑
i

pi
∣∣φiB〉 〈φiB∣∣ . (17)

Therefore, the state |φ〉 is factorizable if and only if ρA is pure, which using (6) is again
equivalent to S(A) = 0 (of course, all this is also valid for subsystem B). Summarizing
the previous analysis, we have found that:

If ρAB is pure, ρAB is entangled⇐⇒ S(A) 6= 0 . (18)

4This type of density matrices (convex combinations of product density matrices) are precisely those
that can be obtained starting from product states ρAB = ρA⊗ρB and performing LOCC (Local Operations
and Classical Communication, which basically are local operations performed on a part of the system and
communicated classically to other part of the system, which again can perform a local operation based
on the information received) [4].
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3.2 Mixed systems

The previous equivalence justifies the expression entanglement entropy, since von Neu-
mann entropy detects entanglement. Moreover, for a pure system we have S(AB) = 0
and, using (13), we get S(A) = S(B). Therefore we can write the mutual information as

I(A : B) = S(A) + S(B)− S(AB) = 2S(A) . (19)

Since quantum entanglement is a type of correlation and mutual information quantifies
correlation, we conclude that (entanglement) entropy quantifies entanglement.

This link between entanglement and entropy is valid only for pure systems, as we
will see shortly. Nonetheless, the expression entanglement entropy is used also for mixed
systems, the reason being explained in section 3.3.

3.2 Mixed systems

Once we allow our system to be in a mixed state, the previous interpretation of entropy
as a measure of entanglement is lost. In a mixed system, entropy can be non zero even in
a factorized density matrix ρ = ρA⊗ ρB, as we can see considering the following product5

ρ =

(∑
a

pa |a〉 〈a|

)
⊗

(∑
a′

pa′ |a′〉 〈a′|

)
=
∑
a,a′

papa′ |aa′〉 〈aa′| , (20)

whose entropy is non zero if pa 6= δaa0 .

In subsection 2.1 we argued that mutual information measures correlation. This cor-
relation includes classical and quantum correlation, the former arising from mixedness in
separable states and the latter from entanglement in pure or mixed states. For example,
consider the separable mixed state

ρ =
1

2
(|00〉 〈00|+ |11〉 〈11|) , (21)

which is a maximally classically correlated pair of qubits. Its mutual information is
I(A : B) = ln 2. If we now take the Bell pair

|ψ〉 =
1√
2

(|00〉+ |11〉) , (22)

which is an entangled (pure) system, we find that I(A : B) = 2 ln 2. We can then see
that entanglement is a stronger form of correlation than classical correlation, but it is also
easy to realize that mutual information does not distinguish between both: two pairs of
classically correlated qubits have the same mutual information as a single Bell pair.

The problem is then clear. Given a system with non zero mutual information (this is, a
correlated system), how can we tell if there is quantum correlation in it? In other words,
how can we tell if the system is entangled or not? This problem is very hard to solve,

5We will often use the notation |a〉 ⊗ |b〉 ≡ |ab〉 and 〈a| ⊗ 〈b| ≡ 〈ab|.
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3.3 Purification

and it is in fact a NP-hard problem.6 There are some sufficient conditions to conclude
the system is entangled but a full characterization is not yet known.

3.3 Purification

We have just seen that, given a pure system AB, it being entangled is equivalent to a
non zero entropy of one of its subsystems (which at the same time is equivalent to our
subsystems being mixed). However, this result did not hold for mixed systems. In this
section we come back to this case and see how there is still a deep relation between
entanglement and entropy.

Let us suppose now that we start with a single system A in a mixed state; let then

ρA =
∑
a

pa |a〉 〈a| (23)

be its density matrix (obviously we need pa 6= δaa0 for the system to be in a mixed state).
We define the purification of A as the state in HA ⊗HA

|φ〉 =
∑
a

√
pa |a〉 ⊗ |a〉 . (24)

This is a pure state by definition, it is entangled because A is mixed and additionally
ρA = TrA |φ〉 〈φ| (this notation means tracing over one of the factors in the tensor product).

The purification process enables us to draw a very important conclusion: our ignorance
about a system (the fact that it is mixed), regardless its origin, is indistinguishable of that
caused by entanglement in an associated pure system. More precisely, for pure systems we
found that entanglement was equivalent to non-zero entropy (mixedness) of a subsystem;
for mixed systems, the same relation applies if we think of these systems as subsystems
of a larger “purified” one. Therefore, “entropy” and “entanglement” are interchangeable,
making the expression “entanglement entropy”, although pedagogical, a redundancy.

4 Entanglement entropy in quantum field theories

The main feature of a quantum field theory (from now on, QFT) is the intrisic existence
of space: that is, operators depend not only on time (in Heisenberg’s picture) but also
on the position in a given spatial manifold. A pretty intuitive and simplified approach to
introduce entanglement entropy in QFTs is to consider discretized spaces, which are way
easier to work with and, often, describe real QFTs when we take the continuous limit.

6NP problems are those for which the problem instances, where the answer is “yes”, have proofs
verifiable in polynomial time by a deterministic Turing machine. Informally, NP-hard problems are those
which are “at least as hard as the hardest NP problems” [5].
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4.1 Relativistic QFTs

Let us then consider a lattice with points {xi}i∈I . On each point xi there is a Hilbert
space which we will denote by Hi. The total Hilbert space can then be thought as

H ∼=
⊗
i∈I

Hi . (25)

Given a subset A ⊂ I we can factorize the previous expression as

H ∼= HA ⊗HAc , (26)

where Ac = I − A is the complement of A and obviously

HA =
⊗
i∈A

Hi , HAc =
⊗
i∈Ac

Hi . (27)

We say that A is a subsystem. The factorization in (26) allows us to speak of entangle-
ment entropy, mutual information and other concepts treated in the previous section. In
the continuous limit it still makes sense to define a subsystem as a spatial region A,7 and
it is natural to think that a factorization as that in (26) will still hold, since operators in
different points commute. However this is not quite right due to subtleties in the border
δA of A, which is known as entanglement surface. It will not be proved here but even
when such a a factorization is not possible one can still define the reduced density matrix
ρA and consequently the entanglement entropy.

4.1 Relativistic QFTs

In a relativistic QFT we do not just have a space but a space-timeM equipped with a
causal stucture. Such a structure enables us to define the following concepts:

� Let I ⊂ R be an interval. A curve γ : I −→M parametrized by its proper length is
said to be causal if its tangent vector has negative or zero (pseudo-)norm at every
point. We say it is maximal if I = R or if it starts or ends at a curvature singularity
point.

� Given S ⊂ M, we define the causal domain of S, denoted as D(S), as the set of
points p ∈M such that every causal maximal curve going through p intersects S.

� We say that S is acausal if any two points in S are not causally related.

� We say that Σ ⊂M is a Cauchy slice if Σ is acausal and D(Σ) =M.

Cauchy slices play an essential role for the following. Since Heisenberg equations, which
govern the evolution of operators, must respect the causal structure, any observable can
be evolved to one in a given Cauchy slice (because D(Σ) =M). In this sense, operators

7Of course now A cannot be an arbitrary subset of the manifold, we must be careful to choose it as a
subvariety of our manifold.
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4.2 Euclidean path integrals

Σ
A

Σ′

A′

(a) Example of regions (marked with
thicker lines) A and A′ of two different
Cauchy slices Σ and Σ′ with the same
causal domain (shown in red), where the
causal structure is that of a Minkowski
space.

x

t

AAc

(b) Illustration of the half-line
A and its causal domain, the
Rindler wedge, shown in blue.
The complementary of A in the
Cauchy slice t = 0 is labeled as
Ac.

Figure 1: (a): Regions sharing the same causal domain. (b): Rindler wedge

in Σ must be complete, because any other observable can be written as a function of these
using Heisenberg equations. Besides, the fact that Σ is acausal tells us that operators in
different points of Σ commute. We can conclude that, to define subsystems, Σ plays the
role that the spatial manifold played before, and a subset A ⊂ Σ will have a corresponding
factorization as that of (26). In fact, by the previous argument we can associate HA and
ρA not only to A but to the whole D(A); or to say it another way, given another Cauchy
slice Σ′ ⊂ M and another subset A′ ⊂ Σ′, if D(A) = D(A′) then HA ≡ HA′ , ρA ≡ ρA′
and therefore S(A) = S(A′) (see figure 1 (a)).

4.2 Euclidean path integrals

Now we will briefly introduce the euclidean path integral formalism, a powerful
pictorial tool to calculate transition amplitudes. It is based on the regular path integral
formalism of quantum mechanics (see for example [6]), which states that the amplitude
for a state |φ1〉 to evolve into another |φ2〉 in a given time T may be calculated as

〈φ2| e−iTH |φ1〉 =

∫ φ(t=T )=φ2

φ(t=0)=φ1

DφeiS[φ] , (28)

where S denotes the action and we set h̄ = 1. The last integral is a sum over all possible
field configurations with fixed boundary conditions at t = 0, T . If we make a Wick
rotation, which changes the time variable as t = −iτ , the previous expression reads

〈φ2| e−βH |φ1〉 =

∫ φ(τ=β)=φ2

φ(τ=0)=φ1

Dφe−SE [φ] , (29)

where SE is the euclidean action and β := iT . The power of this change of variable
is that it changes the geometry of our space-time, since −dt2 becomes dτ 2, making τ a

10



4.2 Euclidean path integrals

space-like variable. The exact meaning of the integration in equation (29) depends on the
topology of space. For the simple case of a space-time with d+ 1 dimensions where space
is simply connected (a line (1d), a plane (2d), etc.) we can depict equation (29) by:

〈φ2| e−βH |φ1〉 =

φ1

β

φ2

, (30)

where (euclidean) time is in the vertical and space in the horizontal direction. This picture
means we are integrating over Rd × [0, β], a black (labeled) line represents boundary
conditions and no line means that piece of the drawing extends to infinity. Now, in
Schrödinger picture, the wavefunction of a state |Φ〉 is completely determined by the
transition amplitudes 〈φ|Φ〉. Therefore, we can think of |Φ〉 as the functional |φ〉 7→ 〈φ|Φ〉.
Then, if |Φ〉 = e−βH |φ1〉 we can depict it as8

|Φ〉 = e−βH |φ1〉 =

∫ φ(τ=β)=?

φ(τ=0)=φ1

Dφe−SE [φ] =

φ1

β , (31)

where the dashed line symbolizes we need an input for our functional. Lastly, suppose we
start in some state |Y 〉 =

∑
n yn |n〉, with H |n〉 = En |n〉. Applying the operator e−τH we

have
e−τH |Y 〉 =

∑
n

e−τEnyn |n〉 ≈ e−τE0y0 |0〉 , for τ →∞ . (32)

It follows that we can define (not nomalized) ground states by doing path integrals that
extend to infinity in one direction, which we could represent as:

|0〉 ∝ . (33)

In the sake of concreteness, let us consider as our space-timeM a 2−dimensional Minkowski
space with one time and one spatial coordinate. The set defined through the equation
t = 0 is an example of a Cauchy slice. The half-line subset A = {(t, x) ∈M/ t = 0, x ≥ 0}
has a causal domain

D(A) = {(t, x) ∈M/ |t|≤ x} , (34)

which is known as the Rindler wedge (see figure 1 (b)). Applying the previous tool we
will now see that the vacuum ρ = |0〉 〈0| is a highly entangled state. Using (18) we can

8If we want to represent the bra 〈Φ| we just turn this picture upside down.
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4.2 Euclidean path integrals

get an astonishing conclusion: an observer that spends his whole life inside the Rindler
wedge will see his universe in a mixed state.

Using equation (33) we can represent the vacuum’s ρ = |0〉 〈0| matrix elements as

〈φ2| ρ |φ1〉 = 〈φ2|0〉 〈0|φ1〉 ∝
φ1

φ2

x0

. (35)

By definition we have ρA = TrAc ρ, which amounts to writing |φi〉 =
∣∣φAi 〉⊗ ∣∣φAc

i

〉
(we can

think of φAi (x) as the field φi(x) restricted to the region x ≥ 0, and analog for Ac). Then
the matrix elements of ρA would be:〈

φA2
∣∣ ρA ∣∣φA1 〉 =

〈
φA2
∣∣TrAc ρ

∣∣φA1 〉 =

∫
DφA

c (〈
φA2
∣∣⊗ 〈φAc∣∣) ρ (∣∣φA1 〉⊗ ∣∣φAc〉)

. (36)

Summing over all possible fields
∣∣φAc〉

“glues” the top and bottom sheets along Ac in
equation (35). Therefore we obtain

〈
φA2
∣∣ ρA ∣∣φA1 〉 ∝

x0

(0, 0)
φA1

φA2

. (37)

The previous picture suggests changing to polar coordinates (r, θ) ∈ [0,∞)×[0, 2π], where
unlike normally the points (r, 0) and (r, 2π) are not identified. The matrix elements
〈φ2| e−βH |φ1〉 were thought as translations in the τ directions; similarly, (37) suggests
thinking of

〈
φA2
∣∣ ρA ∣∣φA1 〉 as a translation in the θ direction. We have an analogy between

τ and θ, or equivalently between t and χ := iθ. Therefore, we can identify

ρA ≡ e−2πK , (38)

where K is the generator of χ translations, just as H is the generator of t translations.
This state is a Gibbs’ state and, since e−2πK =

∑
k e
−2πλk |k〉 〈k|, where K |k〉 = λk |k〉,

we see it is a mixed state. Therefore, we can conclude that the vacuum is an entangled
state.

The last equation is telling us that, to an observer confined to the Rindler wedge, the
vacuum looks like a thermal state (with respect to the (boost) generator K) at a tem-
perature Tχ = 1/(2π). It is important to notice that this is not the physical temperature
such an observer feels, since we must take into account the local redshift factor. Thus
we have

Tphys =
Tχ√−gχχ

=
1

2πr
, (39)
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where we have used that ds2 = dr2 + r2dθ2 = dr2 − r2dχ2. For instance, an observer
following a world-line of constant r has a trajectory in the original (t, x) coordinates of
the form

x(t) =
√
r2 + t2 , (40)

which is the equation of a hyperbola in the (t, x) plane. This corresponds to an observer
with constant acceleration a = 1/r, and the fact that an observer being accelerated
at a constant proper rate a experiences a temperature a/(2π) is known as the Unruh
effect [7]. The dependence T ∝ r−1 means that the fields are very “hot” next to the
entangling surface.9 This has a clear physical interpretation: when we trace over Ac we
transition from a pure to a mixed state, which makes some of the field modes to decohere,
and the closer the observer is the more UV modes he can see to be decohered. It is
also interesting to note that, although the physical temperature is spatially varying, the
system is in perfect thermal equilibrium thanks to the varying gravitational potential (in
other words, although the physical temperature Tphys felt by an observer was found to
have an r−dependence, the system’s temperature Tχ = 1/(2π) is constant).

The fact that ρA can be understood as a thermal state means that we can calculate its
entropy as a thermodynamic entropy; that is, in this case the entanglement entropy S(A)
has the meaning of a real physical entropy (as seen by an observer confined to the Rindler
wedge). We will use this to estimate10 the value of S(A) by adding up local thermal
entropies. We need to take two considerations into account. First, for a field of mass m
the entropy density essentially vanishes for T < m, since the field is frozen out. Therefore,
remembering that T ∝ r−1 we can approximate s(T (r)) ≈ 0 for r > ζ := m−1. In other
words, what we are saying is that the field is entangled only with a neighborhood r ≤ ζ
of the entangling surface (in fact, this intuitive statement holds for any dimension and
any entangling surface). Second, for temperatures much higher than m, by dimensional
analysis we find s(T ) ∝ T . Thus, for r << ζ the entropy density diverges and so does its
integral. Hence, we need (as usual) to impose an UV cutoff at r = ε. With these previous
considerations we have:

S(A) ≈
∫ ∞
ε

drs(Tphys(r)) ∝
∫ ζ

ε

dr
1

r
= ln

ζ

ε
.

We can get a more precise estimate if we assume that the theory has an UV fixed
point (a fixed point in the renormalization group flow [8]) which is a Conformal Field
Theory. A conformal field theory (usually denoted as CFT) is a type of quantum field
theory that is invariant under the conformal group, which is the set of transformations
of spacetime that preserve angles (but not necessarily lengths). Of course, the confor-
mal group includes all the transformations in the Poincarè group, but besides there are
others such as scale transformations (in fact, for two dimensions it can be shown that
scale invariance is enhanced to conformal invariance). Generally speaking, we could say
conformal transformations are coordinate transformations that are a local rescaling of

9All the hyperbolas in equation (40) have the curve |t|= x as asymptote and intersect at the x-axis at
(0, r), so the smaller r is the closer we are to the entanglig surface.

10This is an approximation, since thermal entropy densities are defined only for flat space at a constant
temperature, whereas here we have seen that T is spatially varying.
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the metric. That being said, the entropy density (per unit volume) of a CFT (at finite
temperature) with central charge c is given by

s(T ) =
2πc

6
T , (41)

and therefore

S(A) ≈
∫ ζ

ε

dr s(Tphys(r)) =
c

6

∫ ζ

ε

dr

r
=
c

6
ln
ζ

ε
. (42)

From this equation we learn that, on one side, the entropy has a logarithmic UV divergence
proportional to the central charge c and, on the other side, that it is IR-finite if and only
if the field is massive.

For the case of a massless field (m → 0 or equivalently ζ → ∞) we can solve this
IR-divergence by considering a finite interval instead of the whole half-line; let then

A = {0} ×
[
− l

2
,
l

2

]
. (43)

Note that, by translation symmetry, this is equivalent to considering A = {0}× [0, l], but
we center the interval around x = 0 to obtain a more clear comparison with the calculation
that will be made in subsection 5.2. In this case the entangling surface consists of two
separate regions (the two endpoints of the interval) and the entropy, by translational
symmetry, can only depend on their relative position, the length l of the interval. At
first it is natural to think that the entropy cannot depend on l, since our theory is
conformally invariant. However, we have seen that it does depend on the UV-cutoff ε,
breaking the conformal symmetry and allowing the entropy to depend on l/ε. As we saw
in (42), the divergence of the entropy near the endpoint (entangling surface) was of the
form (−c/6) ln ε and, since we are working with an entangling surface composed by two
endpoints, we will now have a divergence of the form (−c/3) ln ε. As discussed before, the
dependence of the entropy with ε automatically dictates the dependence on l, with which
we finally get

S(A) =
c

3
ln
l

ε
. (44)

If we analyze the steps and assumptions that led to the previous equation, we find it is
valid for any interval of length l of any CFT with central charge c in flat space-time.

5 Entanglement entropy and holography

As we have discussed in section 3, entanglement entropy gives us a lot of physical in-
formation about a system. However, as one can guess from subsection 4.2, calculating
entanglement entropies is very hard except in a few cases (in the previous example, one
of those few cases, we were able to find an expression for the entropy using that the
obtained reduced density matrix was a thermal state). The solution to this apparent
problem was given in 2006 by Shinsei Ryu and Tadashi Takayanagi, who conjectured
a beautiful geometrical way to calculate entanglement entropies using holographic tech-
niques. To understand their proposal we first need to take a small detour and introduce
the AdS/CFT correspondence.
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5.1 AdS/CFT correspondence

a

2a

(a) As we double the
lattice spacing we
substitute every four
points by a single
one located at their
middle.

z

(b) If we draw several grids with the same number of
points, we can see the relative size of the gray region
with respect to the lattice spacing and the shrinking
effect becomes clear. We see how the gray region re-
duces its side as z increases.

Figure 2: Kadanoff-Wilson renormalization of a lattice

5.1 AdS/CFT correspondence

The AdS/CFT correspondence was proposed in 1997 by Juan Maldacena [9]. It is
a duality11 between conformal field theories and quantum gravity theories in an anti-
de Sitter spacetime. The field theory lives in a D−dimensional space-time, while the
quantum gravity theory adds up an extra dimension and lives in a (D + 1)-dimensional
space-time;12 one can think of the field theory as living at the boundary of its dual gravity
theory, which justifies the name of holographic correspondence.

We will try to motivate the correspondence and this extra dimension from the Kadanoff-
Wilson renormalization group approach. As we did in section 4, let us discretize our
field theory and consider it as a lattice system with lattice spacing a: we can think of
this parameter a as the resolution we have of the system (the smaller a is the more points
we have access to). If we want to simplify our system we can substitute a collection of
points, for example four of them, by a single one. This amounts to reducing our system
to one with four times less points and lattice spacing 2a (see figure 2). We could repeat
this process indefinitely (supossing our system has enough points) obtaining a sequence
of lattices with lattice spacing u = (a, 2a, 4a, 8a, . . .). The key idea is to promote the
sequence of lattice spacings u to a continous variable u ∈ [0,∞) and think of it as a new

11A duality is a non-trivial physical equivalence between two seemingly very different theories.
12Originally, it was formulated for D = 4 [9].
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5.1 AdS/CFT correspondence

dimension; that is, the different lattices shown in figure 2 are actually thought of to be
layers of a new space with an extra dimension.

To motivate the gravity nature of this new space let us consider a region of our lattice,
as the gray one shown in figure 2. If we get two lattices with spacings u < u′, it is
clear that the same region will appear smaller (in comparison to our only parameter, the
lattice spacing) in the lattice with the biggest spacing.13 This is telling us that our new
dimension is changing the geometry of the space. Following Einstein’s remarks on the
connection between geometry and gravity, it seems natural to add gravity to this higher-
dimensional new space. This is the main idea of the duality: given a D−dimensional
QFT there is an associated gravity theory living in (D + 1)−dimensions, with the extra
dimension amounting to the scale at which we probe our QFT. The QFT lives at the
boundary u = 0 (no lattice spacing, continuous theory) of its gravity dual. 14

For an arbitrary QFT, the geometry of its associated gravity theory is usually very
hard to calculate. However, for the case of a Conformal Field Theory it is possible
to find the associated geometry. Indeed, let (t, x1, . . . , xD−1) = (t, ~x) be coordinates of
our D−dimensional QFT and let z be the extra dimension. The most general metric
in the (D + 1)−dimensional space which preserves Poincaré invariance (invariance under
translations, rotations and boosts) in D dimensions has the form:

ds2 = Ω2(z)(−dt2 + d~x2 + dz2) , (45)

where Ω(z) is a function to be determined. We have argued that z represents the scale
at which we consider the theory. Therefore, the transformation (t′, ~x ′, z′) = λ(t, ~x, z)
preserves distances and, for our theory to be conformal invariant we must have

ds′ 2 = Ω2(λz)λ2(−dt2 + d~x2 + dz2) = Ω2(z)(−dt2 + d~x2 + dz2) = ds2 , (46)

which implies Ω2(λz) = Ω2(z)λ−2. Therefore we find

Ω(z) =
L

z
, (47)

where the constant L is known as the anti-de Sitter radius. In summary, the line element
of the dual gravity theory

ds2 =
L2

z2
(−dt2 + d~x2 + dz2) , (48)

is that of an AdS spacetime.

5.1.1 Counting the degrees of freedom

Once we have established this correspondence we must set the rules to translate quantities
and concepts from one side to the other. The first thing we will do is match the degrees
of freedom in both sides.

13We can think of an analogy with a camera. If we are very close to an object we will have high
resolution of it (small u) and it will appear very big ; as we move away from it, the resolution will be
lower (bigger u) and the object will appear smaller.

14This correspondence was established on a firm basis in the framework of string theory. Here we are
providing a quick motivation on physical grounds.
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5.1 AdS/CFT correspondence

In the QFT side we must impose UV and IR regulators to avoid divergences. Let
then ε and R be the the UV regulator (lattice spacing) and IR cutoff (system’s size)
respectively. If our space-time has d dimensions (d − 1 space-like and 1 time-like) then
we have Rd−1/εd−1 cells, and therefore the number NQFT of degrees of freedom will be

NQFT = cQFT

(
R

ε

)d−1
, (49)

where cQFT is called central charge and it represents the number of degrees of freedom
per lattice site.

In the gravity side, the entropy of a volume is bounded by that of a black hole fitting
inside the volume [10]. According to Bekenstein-Hawking formula this entropy is given
by

SBH =
Ahor

4G
, (50)

where Ahor is the area of the event horizon and G is Newton’s gravitational constant.
Since the number of degrees of freedom is of the same order as the maximum entropy, we
have

NAdS ∼ A∂
4G

, (51)

where A∂ is the area of the region at the boundary z = 0 of our (d+ 1)−dimensional AdS
space. This area is divergent so we instead calculate the area of a slice at z = ε:

A∂ =

∫
Rd−1,z=ε

dd−1x
√
g =

(
L

ε

)d−1 ∫
Rd−1

dd−1x . (52)

Similarly as in the QFT side we must consider only a portion of the space to solve the
divergence. For this we simply put our system in a box of size R, thus obtaining

A∂ =

(
L

ε

)d−1 ∫
[0,R]d−1

dd−1x =

(
LR

ε

)d−1
. (53)

As expected, NQFT and NAdS both scale the same way with the UV and IR regulators ε
and R. For the case d = 2 an exact calculation was made in [11] even before Maldacena’s
paper. In it Brown and Henneaux defined the so called asymptotic symmetries and found
that in 3d-gravity (AdS3) they fulfilled a Virasoro algebra with central charge c given by:

cQFT =
3L

2G
, for d = 2 . (54)

We can see that it differs only by a factor 6 from what we would have gotten imposing
NQFT = NAdS with the previous order-of-magnitude analysis.

5.1.2 Correlation functions

Now we will see how to calculate correlation functions of the form 〈O(x1) . . .O(xn)〉
in the gravity side. In field theories we can calculate them from functional derivatives
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of a generating function as follows. We perturb the lagrangian by a source term as
L′ = L+ J(x)O(x) ≡ L+ LJ , where

ZQFT [J ] =

〈
exp

[∫
ddxLJ

]〉
QFT

, (55)

is the generating functional. Then, the correlators can be calculated as

〈O(x1) . . .O(xn)〉 =
δ(n)

δJ(x1) · · · δJ(xn)
lnZQFT [J ]

∣∣∣
J=0

. (56)

Moving now to the gravity side, let φ(z, x) be a field in AdS and let φ0(x) := φ(0, x)
be the boundary value of φ. The field φ0 is identified as the source J(x) for some dual
operator O in the QFT side.15 The AdS/CFT prescription reads [13,14]:

ZQFT [φ0] =

〈
exp

[∫
ddxφ0O

]〉
QFT

= Zgravity[φ0] , (57)

where Zgravity[φ0] is the partition function (i.e., a path integral) in the gravity theory
evaluated over all functions φ such that φ(z = 0, x) = φ0(x):

Zgravity[φ0] =
∑

φ(0,x)=φ0(x)

eSgravity . (58)

In the limit in which classical gravity dominates (note that this limit can be taken and
is precisely the large N limit discussed by Maldacena [9]) we can substitute the sum
by a single (renormalized) term expSren

grav corresponding to the classical solution, so that
according to equation (57) we have lnZQFT [φ0] = Sren

grav[φ0] and therefore:

〈O(x1) . . .O(xn)〉 =
δ(n)

δφ(x1) · · · δφ(xn)
Sren
grav[φ]

∣∣∣
φ=0

. (59)

Equation (57) is the golden rule of what could be called the “holographic dictionary”,
a set of prescriptions to translate and relate observables from one side of the duality to
the other. Among others (see for example [12]), it includes the relation between fields
in the gravity side and sources for operators in the field theory or the relation between
the AdS radius and the central charge. It is important to realize how important this
dictionary is, since the AdS/CFT correspondence is nothing but a conjecture. Thus, it
is this dictionary that allows us to actually compare quantities and observables in both
sides, giving physical reality to the abstract theoretical connection between theories.

For the purpose of this work, it would be convenient to find a way to calculate entropies
using the duality. In the next section we will find how to do it, and we will see how, aside
from its pure theoretical interest, the correspondence often turns a rather difficult problem
into a relatively easy one.

15Strictly speaking, the source is not φ0 but a regularized value, since φ(z, x) diverges as z → 0 (see
for instance [12])
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x

z

A

γ

ε

Figure 3: Left: We show a region A of our QFT (at the boundary z = 0 of the gravity
theory) and an homologous surface anchored to A. Note that we are working on a Cauchy
slice and therefore the time coordinate is supressed. Image obtained from [15]. Right:
Due to divergence problems we must insert an UV regulator at z = ε and calculate the
length of curves γ cutted at this point.

5.2 Ryu-Takayanagi conjecture

The Ryu-Takayanagi (RT) conjecture states that, given a region A ⊂ Σ of a Cauchy slice
(which must be either static or invariant under t → −t) in our QFT, the entanglement
entropy of A is given by16

S(A) =
c3

4Gh̄
area(γA) , (60)

where γA is a codimension-2 surface in the gravity dual theory satisfying:

1. γA is anchored to A.

2. γA is homologous to A.

3. γA extremizes the area of a surface fulfilling conditions 1 and 2; if there are several
extremal surfaces, we choose γA as the one with the least area.

The first property means that γA “hangs” off A, as shown in figure 3 (the reason why it
goes down instead of staying close to A is the prefactor 1/z2 in (48), which makes areas
smaller for higher z). The meaning of the second one requires homology theory, a part
of algebraic topology, but for our purposes let us say it is sufficient that the surface γA is
continously deformable into A. Lastly, the meaning of the third property is clear.

In order to make a concrete computation and show how the RT prescription works, let
us come back to the 2d-case treated in subsection 4.2 and consider a (1 + 1)d CFT. As
before, we take as our Cauchy slice the region defined through t = 0. In it we consider
the interval:

A = {0} ×
[
− l

2
,
l

2

]
. (61)

16We will often set c = h̄ = 1 and simply write S(A) = 1
4Garea(γA)
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5.2 Ryu-Takayanagi conjecture

We have seen that the dual geometry to a CFT is an AdS space with one extra dimensions.
Since we are working at a fixed time t = 0, a codimension-2 extremal surface is in this
case one-dimensional, i.e., a geodesic. Therefore, acoording to equation (60), to find the
entropy of region A we must calculate the length of the geodesic connecting the points
(z1, x1) = (0,−l/2) and (z2, x2) = (0, l/2) in a space with a geometry given by (see
equation (48)):

ds2 =
L2

z2
(dx2 + dz2) , (62)

which we see is the hyperbolic plane. It is simply to realize that this length will diverge,
and it is interesting to see how this divergence arises. The blow-up of the metric next to
the boundary z = 0 forces the geodesics to hit it orthogonally. Since the length element
is ds ∼ ldz/z we see that the divergence is logarithmic (with a certain factor). In fact,
we can generalize this result for higher dimensions D > 2. Due to the factor 1/z2 in the
metric, the minimal area surface will hit the boundary orthogonally. Therefore, we can
approximate the near-horizon area as a slice of length ε hanging down orthogonally from
∂A. Thus, the leading divergence will be∫

γA

dD−1x
√
h ≈ LD−1

∫
∂A

dD−2x
√
h∂A

∫ ε

0

dz z1−D =
LD−1σ

(D − 2)εD−2
, (63)

where h is the determinant of the induced metric on γA, h∂A is the determinant of the
metric on ∂A induced by the boundary metric (in our case Minkowski) and σ is the area
of the entangling surface ∂A (with respect to the boundary metric). This is the gravity
dual of the familiar UV divergence problem in QFT, so we proceed as usual: cut off the
space-time at z = ε. Therefore, we want to calculate the length of a curve as that in
figure 3. Parameterizing the curve (z(λ), x(λ)) by λ = z we find

length(γ) =

∫
γ

ds =

∫
γ

L

z

√
dx2 + dz2 = 2L

∫ z=zmax

z=ε

dz

√
1 +

(
dx
dz

)2
z

, (64)

where the upper integration limit zmax and the factor 2 reflect the fact that the curve
rises and then drops down symetrically so we can just calculate half of its length. Taking
the integrand as a 1d “action” and applying Euler-Lagrange equations we find (note that
∂L
∂x

= 0 and therefore x is cyclic):

∂L
∂ẋ

=
ẋ

z
√

1 + ẋ2
= C ∈ R+ =⇒ ẋ2 =

C2z2

1− C2z2
=⇒ (x−K)2 + z2 = C−2 , (65)

which is the equation of a (semi-)circle centered at (K, 0) and with radius C−1, namely
x2 + z2 = l2/4 if we impose boundary conditions (this is, K = 0 and C = 2/l). Going
back to equation (64) with the expression for ẋ2(z) obtained in equation (65) we get

length(γA) = 2L

∫ z=l/2

z=ε

dz

√
1 + (2/l)2z2

1−(2/l)2z2

z
= 2L

∫ z=l/2

z=ε

dz
1

z
√

1− (2/l)2z2
. (66)
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The previous integral can be computed making the change of variable z = (2/l)−1 sin θ;
the result is

length(γA) = 2L
[
ln z − ln

(√
1− (2/l)2z2 + 1

)]l/2
ε

= 2L ln

 l/2
ε

√1−
(

2

l
ε

)2

+ 1


≈ 2L ln

l

ε
,

(67)

where in the last approximation we have used that, at first order,
√

1−
(
2
l
ε
)2 ≈ 1.

Plugging this result into equation (60) with h̄ = c = 1 we finally obtain

S(A) =
L

2G
ln
l

ε
. (68)

Using equation (54) we get L/(2G) = c/3 and we verify that RT leads to the same result
as (44).

We have just seen the first non-trivial check of the RT prescription to compute the
entanglement entropy by holographic means. Now we will see that RT is also instrumental
to prove a non-trivial statement in quantum information theory: the strong subadditivity
property.

5.2.1 Proof of strong subadditivity

In subsection 2.1 we said that mutual information quantifies correlation. One of the facts
that supports this statement is the so called strong subadditivity property, which states
that

I(A : B) ≤ I(A : BC) . (69)

This non-decreasing behaviour of mutual information when we adjoin another system
to A or B is saying that a system is more correlated with two partners than one (i.e.,
the second partner “adds” its correlation). According to the definition (11) of mutual
information the last inequality can be rewritten as

S(ABC) + S(B) ≤ S(AB) + S(BC) . (70)

This inequality, which is a cornerstone in quantum information theory, has a tedious and
long proof which involves many properties of traces and inequalities for convex functions
[16]. However, we will now show a very simple proof using the RT-formula (60).

Let us consider the curves shown in figure 4 with minimal area (length) associated to
the systems ABC (green), B (red), AB (blue) and BC (black). Let X be the length
of the curve anchored to B obtained by following the black line until its intersect with
the blue one, and from there the blue one. The fact that the red curve has minimal
length implies that length(red) ≤ X. Similarly, if Y is the length of the curve anchored
to ABC obtained by following the blue line and then the black one, minimality implies
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Figure 4: Graphical proof of strong subadditivity using RT.

that length(green) ≤ Y . Therefore we have length(red) + length(green) ≤ X + Y =
length(blue) + length(black). Using the RT-formula (60), the last statement is simply the
strong subadditivity inequality.

6 Conclusions

By the end of this dissertation, I hope it has become clear the importance of entanglement
in quantum physics and the power of entropy to work with this quantity.

We began defining both entropy and entanglement as independent properties, but it
soon became apparent that these two quantities are deeply connected. For the case of
a pure system, we saw how it being entangled was equivalent to a non-zero entropy of
its subsystems. For a mixed system, it was possible for it to be non entangled but for
a subsystem to have a non-zero entropy; however, in this case the purification process
allowed us to think of our whole mixed system as part of a bigger, entangled one. This
justified the term “entanglement entropy”: entanglement in a system is equivalent to a
non-zero entropy of a smaller one.

We proceeded by extending our concepts to quantum field theories. Here, we saw how
the causal structure of space-time brought some interesting features. We did not need
to analyze the whole space-time but only Cauchy slices, since their operators must be
complete in the sense that any other operator could be written as a function of those on a
Cauchy slice using Heisenberg equations. It is within these Cauchy slices that we defined
subsystems, and we argued that entropy is dependent on a subsystem’s causal domain
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and not the actual subsystem itself. To close section 4 we calculated the entropy of an
easy example, primarily to show how difficult it can be.

Lastly, we introduced the AdS/CFT correspondence and exposed some entries in the
dictionary that allows ys to relate quantities and observables at both sides of the duality.
Specifically, we focused on the Ryu-Takayanagi conjecture, and with it we were able to
calculate the entropy for the same case as in subsection 5.2 by geometrical means and, as
expected, found a total agreement.

Besides all the material we have presented here, there are still many other topics and
even open problems related to entanglement entropy and holography. To mention a very
recent one, let us suppose we have a black hole. We will make two assumptions: first, that
seen from outside it can be described as a quantum system with S degrees of freedom,
with S = A/(4G) being the entropy given by (50); second, that it evolves according to
unitary evolution, also seen from outside. As Hawking proved in [17], black holes emit
radiation, and this radiation is entangled with partners of radiation that fall into the
black hole. As the black hole evaporates, more radiation will be emitted and, since we
can only observe the exterior of a black hole, the entropy of the radiation will increase
steadily until it reaches a maximum when the black hole evaporates. On the other side,
the (thermodynamic) entropy of a black hole is proportional to its area [18, 19], and
therefore its entropy will decrease as its evaporates. However, as the black hole’s entropy
decreases so do its degrees of freedom, and when it is small enough it does not have enough
degrees of freedom to entangle with the emitted radiation. Therefore, we would expect
that there is a certain time when the entropy of the radiation stops increasing and starts
decreasing (making the shape of an upside-down V), contrary to Hawking’s predictions
in his famous black hole information paradox [20]. This is the so called Page curve,
and last year the RT formula has been modified successfully to be able to reproduce this
expected behavior [22, 23]. We can also see this noticing that, from the definition we
have given for entropy, it is clear that S(A) ≤ ln dimHA. Furthermore, in a pure state
we have S(A) = S(Ac), and therefore S(A) ≤ min{ln dimHA, ln dimHAc}. It turns out
that in the limit of large Hilbert spaces, a typical (or random) pure state saturates the
previous inequality. Thus, assuming that the dynamics governing the radiation process is
essentially random (except for determining the amount of radiation as a function of time
and, therefore, the sizes of the black hole and radiation’s Hilbert spaces) the black hole’s
entropy will follow a Page curve.

We emphasize on the profound connection that RT makes between spatial entanglement
and the dual geometry. As it has been suggested, the RT prescription seems to insinuate
that entanglement is the property of the field theory from which the dual gravitational
space-time emerges. Whether the AdS/CFT correspondence turns out or not to be a
suitable description of quantum gravity, I hope in this work we have reinforced the great
link between the two major theories of modern physics.
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